Subject programme

- 1. Subject name / subject module: Modern Control Theory
- 2. Lecture language: English
- **3.** The location of the subject in study plans:
 - Area or areas of the studies: Computer Control Systems Engineering
 - Degree of the studies: 2nd degree studies
 - Field or fields (implementation of effects standard): Mechatronics
- 4. Supervision of subject implementation:
 - The Institute / Another unit: The Institute of Informatics and Mechatronics
 - The person responsible for the subject: Ocetkiewicz Tomasz, mgr inż.
 - People cooperating in the development of the programme of the subject:
- 5. The number of hours and forms of teaching for individual study system and the evaluation method

	Teaching activities with the tutor																		
Form																			Total
of classes Mode of study	•	sow	ECTS	Lecture	sow	ECTS		sow	ECTS		sow	ECTS	 sow	ECTS	 sow	ECTS	 SOW	ECTS	ECTS
Full-time studies				22	41	2 5													25
Part-time studies						2,5													2,5
Credit rigor				exam															

6. Student workload – ECTS credits balance

1 ECTS credit corresponds to 25-30 hours of student work needed to achieve the expected learning outcomes including the student's own work

Activity (please specify relevant work for the subject)	Hourly student workload (full-time studies/part-time studies)
Participation in lectures	22
Independent study of the subject	29
Preparation to the exam	10
Participation in an exam / graded assignment / final grading	2
Total student workload	63
ECTS credits	2,5
* Student's workload related to practical forms	0
Student's workload in classes requiring direct participation of academic teachers	22

7. Implementation notes: recommended duration (semesters), recommended admission requirements, relations between the forms of classes:

None

Recommended duration of the subject is taken from the course plan.

8. Specific learning outcomes – knowledge, skills and social competence

Spe	ecific learning outcomes for the subject			Methods for testing of		
Outcome symbol	Outcome description	Form	Teaching method	(checking, assessing) learning outcomes		
		Knowle	edge			
K_W02	The student possesses sufficient knowledge of automation, electronics, and electrical engineering, necessary to understand the structure of control system and to apply this knowledge in practice through the use of appropriate methods, tools, and components to design and prototype a control system due to required task parameters.	Lecture	Expository methods	Exam		
K_W05	The student knows and understands selected facts and phenomena in control systems, is able to explain the complex relationships between them, which constitute the advanced general knowledge in the field of automation, electronics, and electrical engineering, sufficient to prepare a control					

Subject programme

	algorithm that meets all the design specifications.			
	specifications.	Skill	s	
К_U03	The student has sufficient skills to plan and carry out experiments, including computer simulations of control systems, analyze data, and draw conclusions.	Lecture	Expository methods	Exam
		Social com	petence	
К_КО2	A student is ready to recognize knowledge in solving cognitive and practical problems and to consult experts in case of difficulties with solving the problem concerning control theory on their own.	Lecture	Expository methods	Exam

9. Assessment rules / criteria for each form of education and individual grades

0% - 60%	ndst	81% - 90%	db
61% - 70%	dst	91% - 93%	db+
71% - 80%	dst+	94% - 100%	bdb

10. The learning contents with the form of the class activities on which they are carried out

(Lecture)

1) Control enginnering – revision: concept of a system; open-loop systems; closed-loop systems; time-omain analysis; design in frequency domain; design in the s-plane; system modelling; mathematical models of mechanical systems; mathematical models of thermal systems; mathematical models of electrical systems; mathematical models of fluid systems. 2) Digital control systems: sampling; the z-transform; stability in the z-plane; digital compensator design. 3) Design in state-space: the concept of state; controlability; observability; state variable feedback design; full-order state observer; reduced-order state obserer; controller examples. 4) Fuzzy logic control systems: fuzzy set theory; fuzzy set operations; fuzzy relations; fuzzy logic control. 5) Application of neural network control systems to modelling, estimation and control. 6) Application of genetic algorithms to control systems design.

11. Required teaching aids

Lecture - multimedia projector

12. Literature:

a. Basic literature:

1. Stephen J. Dodds; Feedback Control; ISBN 978-1-4471-6675-7; Springer 2015

2. Magdi S. Mahmoud, Yuanqing Xia; Applied Control Systems Design; ISBN 978-1-4471-2879-3; Sprinder 2012

- **a.** Supplementary literature:
 - 1. Alexandru Forrai; Embedded Control System Design; ISBN 978-3-642-28595-0; Springer 2013
 - 2. Tian Seng Ng; Real Time Control Engineering; ISBN 978-981-10-1509-0; Springer 2016

3. Stanko Strmčnik, Đani Juričić; Case Studies in Control; ISBN 978-1-4471-5176-0; Springer 2013

b. Internet sources:

1. Matlab Control System Designer - https://www.mathworks.com/help/control/ug/getting-started-with-the-control-system-designer.html

2. Control Loop Systems and Components - https://www.montalvo.com/article-library/control-loop-systems-explained/

- 3. Introduction to Control Systems https://www.scilab.org/tutorials
- **13.** Available educational materials divided into forms of class activities (Author's compilation of didactic materials, e-learning materials, etc.)
- **14.** Teachers implementing particular forms of education

Form of education	Name and surname					
1. Lecture	Ocetkiewicz Tomasz, mgr inż.					